Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries.

نویسندگان

  • Dahyun Oh
  • Jifa Qi
  • Yi-Chun Lu
  • Yong Zhang
  • Yang Shao-Horn
  • Angela M Belcher
چکیده

Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated as it has a critical role in the operation of rechargeable lithium-oxygen batteries. Here we report the electrode design principle to improve specific capacity and cycling performance of lithium-oxygen batteries by utilizing high-efficiency nanocatalysts assembled by M13 virus with earth-abundant elements such as manganese oxides. By incorporating only 3-5 wt% of palladium nanoparticles in the electrode, this hybrid nanocatalyst achieves 13,350 mAh g(-1)(c) (7,340 mAh g(-1)(c+catalyst)) of specific capacity at 0.4 A g(-1)(c) and a stable cycle life up to 50 cycles (4,000 mAh g(-1)(c), 400 mAh g(-1)(c+catalyst)) at 1 A g(-1)(c).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability

Lithium-oxygen batteries with high theoretical energy densities have great potential. Recent studies have focused on different cathode architecture design to address poor cycling performance, while the impact of interface stability on cathode side has been barely reported. In this study, we introduce CoO mesoporous spheres into cathode, where the growth of crystalline discharge products (Li2O2)...

متن کامل

Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries

The electrochemical performance of lithium-oxygen (Li-O2) batteries can be markedly improved through designing the architecture of cathode electrodes with sufficient spaces to facilitate the diffusion of oxygen and accommodate the discharge products, and optimizing the cathode catalyst to promote the oxygen reduction reaction and oxygen evolution reaction (OER). Herein, we report the synthesis ...

متن کامل

Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries.

Lithium-oxygen batteries are an attractive technology for electrical energy storage because of their exceptionally high-energy density; however, battery applications still suffer from low rate capability, poor cycle stability and a shortage of stable electrolytes. Here we report design and synthesis of a free-standing honeycomb-like palladium-modified hollow spherical carbon deposited onto carb...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013